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ABSTRACT

Neural networks have been increasingly applied for control in learning-
enabled cyber-physical systems (LE-CPSs) and demonstrated great
promises in improving system performance and efficiency, as well
as reducing the need for complex physical models. However, the
lack of safety guarantees for such neural network based controllers
has significantly impeded their adoption in safety-critical CPSs. In
this work, we propose a controller adaptation approach that auto-
matically switches among multiple controllers, including neural
network controllers, to guarantee system safety and improve energy
efficiency. Our approach includes two key components based on
formal methods and machine learning. First, we approximate each
controller with a Bernstein-polynomial based hybrid system model
under bounded disturbance, and compute a safe invariant set for
each controller based on its corresponding hybrid system. Intuitively,
the invariant set of a controller defines the state space where the
system can always remain safe under its control. The union of the
controllers’ invariants sets then define a safe adaptation space that
is larger than (or equal to) that of each controller. Second, we de-
velop a deep reinforcement learning method to learn a controller
switching strategy for reducing the control/actuation energy cost,
while with the help of a safety guard rule, ensuring that the system
stays within the joint safe configuration space. Experiments on a
linear adaptive cruise control system and a non-linear Van der Pol’s
oscillator demonstrate the effectiveness of our approach on energy
saving and safety enhancement.

1 INTRODUCTION

Learning-enabled cyber-physical systems (LE-CPSs) [7, 14, 29, 34]
often leverage machine learning techniques in their perception of
the environment, and increasingly also in the consequent decision
making process for planning, navigation, control, etc. In particular,
neural network based controllers have been applied to a variety of
LE-CPSs, such as building HVAC control [32], autonomous vehi-
cles [20], smart grid [21] and robotics [35], due to their improvement
on control performance and efficiency, and the fact that they do not
require building a complex physical model of system dynamics.
However, the uncertainties from the system input and the neural
network itself make it quite challenging to ensure the safety of
neural-network controlled systems, which has significantly hindered
their adoption in safety-critical CPSs [33].

In this work, we present an approach to leverage multiple con-
trollers (including but not limited to neural network controller) and
design an intelligent adaptor for switching among them to enhance
both system safety and efficiency. At each sampling instant, the
adaptor will choose the appropriate controller based on the current
system state, and then applies the control input computed by the
chosen controller. Our approach is motivated by the intuition that
for many CPSs, multiple controllers designed based on different
methodologies may each have their advantages at different system

states. Thanks to the rapid advancement in learning-based control,
there are a variety of learning methodologies that can help build
neural network controllers for a system [10, 13, 19]. In addition,
well-established model-based controllers, such as PID [4], LQR [6]
and MPC [24], have their own advantages and could be complemen-
tary to data-driven neural network controllers. Then, with effective
adaptation/switching strategy, multiple such controllers can jointly
provide a larger operation space the facilities the improvement of
system safety and efficiency.

With this intuitive motivation, our approach addresses two key
technical challenges for achieving the guarantee of system safety

and the improvement of system energy efficiency:

• We develop an invariant-based formal method for analyzing the
safe configuration space of each controller, which can then be
used to guide the adaptor for making the safe choice. Comput-
ing an invariant for classical systems have been extensively ex-
plored [26, 37]. However, it still remains an open problem for
neural-network controlled systems (NNCSs). To address this
challenge, our method provides a general approach to compute
the (robust) invariant set for a large variety of controllers, in-
cluding linear, polynomial, and neural network based ones. First,
we approximate each controller with Bernstein polynomials un-
der bounded error, and if the approximation precision is not
sufficient, further refine the approximation by partitioning the
system state space. Then, using over-approximation, we convert
the system with each controller to a hybrid polynomial system
under bounded disturbance and compute its (robust) invariant set
with semi-definite programming (SDP) [37]. After obtaining the
invariant of each controller, the adaptor can ensure the system
safety by only choosing from the controllers whose invariant set
covers the current system state.
• Given the computed invariant sets for the controllers, the second

challenge is to intelligently switch among the controllers for re-
ducing the energy consumption while guaranteeing safety. An
effective strategy should select the appropriate controller from all
safe choices to reduce the overall energy, not just the immediate
cost. Given the complexity and heterogeneity of multiple con-
trollers, traditional methods based on optimization techniques can
hardly handle it. Thus, we develop a deep reinforcement learning
(DRL) algorithm that automatically learns the adaptation strategy
among safe controllers. At each sampling instant, the adaptor
make a choice among the safe controllers based on the current
system state, and find the most efficient one for reducing overall
energy consumption. This is achieved by a carefully designed
reward function in learning and a safety guard rule to discard the
rare unsafe choice.

Related work: Our work is related to a rich literature on the safety
verification of controlled systems. General safety verification relies
on the computation of the reachable set, which contains all possible
system states after a finite time when given a set of initial states.



Existing techniques falls into two main categories: 1) explicitly eval-
uating the reachable set [2, 3, 16, 28], and 2) implicitly considering
the reachable set such as barrier certificates [23, 25].The main differ-
ence between the invariant set in our approach and the reachable set
in the literature is that the invariant set enables infinite-time safety
verification while the reachable set provides a finite-time horizon.
In [16], Bernstein polynomials have been applied in reachable set
computation to approximate neural network controllers, but only on
a small part of the state space. In contrast, our method applies Bern-
stein polynomials on the entire space for invariant set computation.

As we develop a DRL-based method with safety guarantees, our
approach is related to the research topic of safe reinforcement learn-
ing [1, 18]. The action exploration in RL causes the unsafe state.
Thus, one idea is to force the agent to explore within the action
set that is a prior known to be safe at a given state [12]. Our ap-
proach falls into the same idea but with the formally verified safety
results. Formal methods are also used in [11] for linear adaptive
cruise control(ACC) with the tabular Q-learning method. In contrast,
our approach mainly targets neural network controllers.

Our work is also related to [17], which also tries to reduce system
energy consumption while guaranteeing its safety. In particular, it
guarantees the safety by deriving three different levels of safety
sets and reduces the energy consumption by skipping the control
input. However, that approach cannot be applied to neural network
controllers, which is the focus of this work.

In summary, our work makes the following contributions:

• We develop a novel framework for energy-efficient control with
safety guarantees by intelligently switching among multiple con-
trollers (including neural network controllers) for LE-CPSs.
• Our framework guarantees infinite-time system safety, as long

as the initial state is within the joint safe configuration space
computed through a novel Bernstein polynomial based controller
approximation method.
• We develop a new DRL method to learn an adaptation strategy

that reduces the overall control energy consumption, while ensur-
ing the system stay within the joint safe configuration space and
thus guaranteeing its safety.
• We conduct extensive experiments on a linear ACC system and a

non-linear Van der Pol’s oscillator system. The results indicate
the effectiveness of our approach in enhancing system safety and
energy efficiency, when compared with using a single controller.

The rest of the paper is organized as follows. Section 2 introduces
an illustrating example and defines problem formulation. Section 3
presents our approach. Section 4 shows the experimental results, and
Section 5 provides further discussion. Section 6 concludes the paper.

2 PROBLEM FORMULATION

We will start with an illustrating example that helps explain the
problems we are trying to solve, and then formally formulate them.

Illustrating Example [Van der Pol’s Oscillator]: Van der Pol’s
oscillator [5] is a 2-dimensional non-linear system whose discrete-
time dynamics is given as
{
𝑥1 (𝑡+1) = 𝑥1 (𝑡) + 𝑥2 (𝑡)𝛿

𝑥2 (𝑡+1) = 𝑥2 (𝑡) + 𝛿 [(1−𝑥
2

1
(𝑡))𝑥2 (𝑡)−𝑥1 (𝑡)+𝑢 (𝑡)] + 𝜔 (𝑡)

(1)

where 𝛿 = 0.05 is the sampling period, 𝑢 (𝑡) is the control input, and
𝜔 (𝑡) is the external disturbance that is uniformly random distributed
over [−0.05, 0.05]. (𝑥1, 𝑥2) are the state variables. The safe state
space is a box [−2, 2] ∗ [−2, 2].

Previous works [15, 22, 31, 36] have designed neural networks
to control the oscillator to the origin point. In this paper, we use
two neural network controllers 𝜅1 and 𝜅2 for the oscillator that are
designed with the DDPG method [19], as detailed in Section 4.

Assume the oscillator is at an initial state (1, 1) within the safe
space, we are interested in the following questions. Does the system
always stay within the safe box by applying 𝜅1? If not, from what
other initial states, the system could be always safe by applying 𝜅1?
Similar questions could be asked for the oscillator with controller
𝜅2. Then, if we verify that system with the initial state (1, 1) can be
safely controlled by either 𝜅1 or 𝜅2, which controller should we pick
for the overall energy reduction? Trying to answer these questions
motivates our formal definition of the problems below and our pro-
posed approach. The illustrating example will be used throughout the
paper and its solution will be shown in the experiments in Section 4.

Formulation: We consider a discrete-time polynomial system:

𝑥 (𝑡 + 1) = 𝑓 (𝑥 (𝑡), 𝑢 (𝑡), 𝜔 (𝑡)),∀𝑡 ≥ 0, (2)

where 𝑥 (𝑡) ∈ R𝑛 is the state variable, 𝑢 (𝑡) ∈ R𝑚 is the feedback
control input variable, 𝜔 (𝑡) ∈ R𝑘 is a bounded external disturbance,
and 𝑓 : R

𝑛 × R𝑚 × R𝑘 → R𝑛 is a polynomial function.
The safe state space, the constraints on control input, and the

external disturbance are given by

𝑥 (𝑡) ∈ 𝑋, 𝑢 (𝑡) ∈ 𝑈 , 𝜔 (𝑡) ∈ Ω, (3)

where 𝑋 = {𝑥 ∈ R𝑛 |
∧𝑛0

𝑖=1 ℎ0,𝑖 (𝑥) ≤ 0}, 𝑈 ∈ R𝑚 and Ω = {𝜔 ∈

R
𝑘 |
∧𝑛𝜔

𝑖=1 ℎ𝜔,𝑖 (𝜔) ≤ 0}. ℎ denotes the linear box constraint function.
Moreover, We use 1-norm | |𝑢 (𝑡) | |1 to denote the control/actuation
energy consumption over time step 𝑡 in this paper.

The trajectory 𝜑𝑥 (0) to the system (2) starting from an initial state
𝑥 (0) ∈ 𝑋 follows the discrete dynamics denoted by

𝜑𝑥 (0) (𝑡 + 1) = 𝑓 (𝜑𝑥 (0) (𝑡), 𝑢 (𝑡),𝑤 (𝑡)),

where 𝜑𝑥 (0) (0) = 𝑥 (0). As stated in Section 1, we may obtain/design
multiple continuous controllers𝜅𝑖 (𝑖 = 1, 2, · · · , 𝑀) for such a system,
including neural network controllers. Then, the first problem we
want to address is the safety verification of the system with each
controller 𝜅𝑖 , formulated as the Problem 1.

PROBLEM 1. Given a dynamical system defined with Equation (2)
and (3) and 𝑀 continuous controllers 𝜅𝑖 (𝑖 = 1, 2, · · · , 𝑀) including

neural network controllers, the safety verification problem for the

system with each controller 𝜅𝑖 is to determine whether the controlled

trajectory 𝜑𝑥 (0) (𝑡) ∈ 𝑋 , ∀𝑡 ≥ 0, ∀𝜔 (𝑡) ∈ Ω,∀𝑥 (0) ∈ 𝑋 .

With the verification results of the above problem, we then want
to design an adaptation strategy 𝑔(𝑥 (𝑡)) : R𝑛 → {1, · · · , 𝑀} to opti-
mize the overall energy consumption by switching among controllers
based on the dynamical system state. Here 𝑔 maps the system state
at each time step 𝑡 to a controller choice. The overall control en-
ergy consumption is defined as in Definition 2.1, and the adaptation
optimization problem with safety guarantees is formulated as the
Problem 2.



Definition 2.1. If with infinite-time safety guarantee, the overall
control energy consumption of the system in Equation (2) as a
function of the adaptation strategy 𝑔 is defined as 1

𝑒 (𝑔) =

+∞∑

𝑡=0

| |𝜅𝑔 (𝑥 (𝑡)) | |1

PROBLEM 2. Given a system defined with Equation (2) and (3)
and multiple continuous controllers 𝜅𝑖 (𝑖 = 1, 2, · · · , 𝑀) including

neural network controllers, and ∀𝑥 (0) ∈ 𝑋 , the problem of opti-

mizing the overall energy consumption with safety guarantee by

adaptation strategy function 𝑔 is formulated as




min
𝑔

𝑒 (𝑔),

𝑠 .𝑡 . 𝑥 (𝑡 + 1) = 𝑓 (𝑥 (𝑡), 𝜅𝑔 (𝑥 (𝑡)),𝑤 (𝑡)),∀𝑡 ≥ 0

𝜑𝑥 (0) (𝑡) ∈ 𝑋,∀𝑡 ≥ 0,∀𝜔 ∈ Ω

3 ENERGY-EFFICIENT CONTROLLER

ADAPTATION WITH SAFETY GUARANTEE

As stated in Section 1, there are two key aspects of our approach:
1) computing the robust invariant set of each controller to build
a joint safe configuration space, and 2) developing a DRL-based
method to learn an efficient adaptation strategy within the joint safe
configuration space.

For 1), informally, robust invariant set 𝑋 𝑖
𝐼
⊆ 𝑋 of the controller

𝜅𝑖 is a set that any controlled trajectory starting from it will never
leave it under any possible disturbance within Ω. To compute the
𝑋 𝑖
𝐼
(𝑖 = 1, 2, , · · · , 𝑀), we first apply Bernstein polynomials with

bounded error to overly approximate each controller via state space
partition. This approximation converts each original controlled sys-
tem such as an NNCS into a hybrid polynomial system with bounded
disturbance. We can then obtain the inner-approximation of the 𝑋 𝑖

𝐼
with SDP by using existing techniques [37]. After that, we build the
joint safe configuration space as the union of the computed inner-
approximations of robust invariant sets, within which the infinite-
time safety is guaranteed for the system.

For 2), we develop a DRL method to learn an efficient adaptation
strategy within the joint safe configuration space, thus guaranteeing
the system safety. More specifically, we set a reward function for
punishing large control input and unsafe controller choice, so that
the DRL agent can learn to reduce the energy consumption while
maintaining safety. In the rare case that the DRL agent selects an
unsafe controller choice, a safety guard rule will discard it and
randomly choose a safe controller instead.

The schematic of our approach is illustrated in Figure 1. Its overall
framework is described in Algorithm 1. Next, we will introduce the
two aspects of our approach in more details.

3.1 Deriving Joint Safe Configuration Space for

Safety Guarantee

In this section, we show how to compute 𝑋 𝑖
𝐼

for the system with 𝜅𝑖 .
We first formally define the concept of robust invariant set 𝑋 𝑖

𝐼
.

Definition 3.1. Consider a system where the dynamics are defined
as Equation (2) and the constraint is defined in Equation (3). For a

1𝜅𝑔 is short for 𝜅𝑔 (𝑥 (𝑡 ) ) in this paper.

𝑿

𝑿𝑰1 𝑿𝑰2𝒙(𝟎)
𝒙(𝟏)

𝒈(𝒙(𝟎)) = 𝜿1
𝒈 𝒙 𝟏 = 𝜿𝟏 𝒙(𝟐)

𝒙(𝟑)
𝒈 𝒙 𝟐 = 𝜿𝟐𝒙(𝟒) 𝒈 𝒙 𝟑 = 𝜿𝟐

Figure 1: Illustration of the schematic of our approach: Con-

sider the oscillator with two neural network controllers 𝜅1 and

𝜅2 that trained by DDPG method. Here 𝑋 is the defined safe

state space. Assume 𝑋 1

𝐼
, 𝑋 2

𝐼
are the robust invariant sets for

each controller, respectively. The joint safe configuration space

is 𝑋 1

𝐼
∪ 𝑋 2

𝐼
. For safety guarantee, when system is at the state

𝑥 (3) ∈ 𝑋 2

𝐼
, we should choose 𝜅2. For energy efficiency, when

system is at the state 𝑥 (2) ∈ 𝑋 1

𝐼
∩𝑋 2

𝐼
, where it can be safely con-

trolled by using either 𝜅1 or 𝜅2, the adaptor decides to choose

controller 𝜅2 to reduce overall control energy cost.

Algorithm 1 Framework of Our Approach.

Require: Multiple controllers 𝜅𝑖 (𝑖 = 1, 2, · · · , 𝑀) for the system
1: Compute robust invariant set 𝑋 𝑖

𝐼
for each controller 𝜅𝑖 .

2: Build the joint safe configuration space as ∪𝑀𝑖=1𝑋
𝑖
𝐼
.

3: Learn the adaptation strategy 𝑔 with the goal of reducing en-
ergy consumption and maintaining system state within ∪𝑀𝑖=1𝑋

𝑖
𝐼

(details shown later in Algorithm 2).
4: Initialization: 𝑡 ← 0, 𝑥 (0) ∈ ∪𝑀𝑖=1𝑋

𝑖
𝐼
.

5: while true do

6: Read the system state 𝑥 (𝑡).
7: Adaptor 𝑔 selects controller 𝜅𝑔 based on 𝑥 (𝑡), with safety

guard rule applied if needed.
8: Actuate the control input 𝜅𝑔 (𝑥 (𝑡)).
9: 𝑡 ← 𝑡 + 1

10: end while

controller 𝜅, 𝑋𝐼 is called an invariant if

𝑋𝐼 = {𝑥 (0) | ∀𝑡 ≥ 0, 𝜔 (𝑡) ∈ Ω, · 𝜑𝑥 (0) (𝑡) ∈ 𝑋𝐼 }.

Moreover, any set that is a subset of the invariant is called an inner-

approximate invariant.

Let 𝑋 𝑖
𝐼

be the invariant for the 𝑖-th controller. Then, the joint safe
configuration space by multiple controllers can be built as ∪𝑀𝑖=1𝑋

𝑖
𝐼
,

within which the infinite-time safety is guaranteed for the system.

PROPOSITION 3.2. (Soundness). For any initial state 𝑥 (0) ∈

∪𝑀𝑖=1𝑋
𝑖
𝐼
, the system where dynamics and constraints are defined in

Equation (2) and (3) with controllers 𝜅𝑖 (𝑖 = 1, 2, · · · , 𝑀) is ensured

to have infinite-time safety guarantee.

Proof. Given any initial state 𝑥 (0) ∈ ∪𝑀𝑖=1𝑋
𝑖
𝐼
, we can at least find

one feasible controller 𝜅 𝑗 such that 𝑥 (0) ∈ 𝑋
𝑗
𝐼

. Then, the system
safety is ensured if we always choose 𝜅 𝑗 as the system controller,



since as due to Definition 3.1, the controlled trajectory 𝜑𝑥 (0) (𝑡) ∈

𝑋
𝑗
𝐼
⊆ 𝑋,∀𝑡 ≥ 0,∀𝜔 ∈ Ω.

REMARK 1. In general, it is intractable to compute the exact

robust invariant set 𝑋 𝑖
𝐼

for a nonlinear system, especially for neural-

network controlled systems. Thus in this paper, we compute an inner-

approximation of the robust invariant set for the system with each

controller, as the inner-approximation maintains the safety guaran-

tee and is more tractable [9]. For simplicity, we somewhat abuse the

notation for 𝑋𝐼 . When we use 𝑋 𝑖
𝐼

in the rest of this paper, we point

to the inner-approximation of robust invariant set for 𝜅𝑖 .

To compute 𝑋 𝑖
𝐼
, we first want to approximate controller 𝜅𝑖 with

polynomials under bounded error. This is because neural network
controllers are complex and hard to tackle with, while the polyno-
mials are more tractable. This approximation converts the original
controlled system such as an NNCS into a polynomial system with
bounded disturbance. Prior work [16] shows that Bernstein poly-
nomials can be effectively applied to approximate any continuous
controller. However, a single polynomial approximation may have to
use a very high degree to achieve certain precision, while the compu-
tation complexity of 𝑋 𝑖

𝐼
increases drastically as the degree increases.

Also, the error reduction by this measure is often limited in practice,
resulting in an inner-approximation that is too conservative. Thus,
following the idea of interpolation, we propose a partition approach
to achieve more precise approximation using polynomials with a
much lower degree. With such partition approximation, the original
controlled system is converted into a hybrid system with low degrees
on each subsystem. We can then obtain the inner-approximation of
the robust invariant set for such a hybrid system by using SDP. We
detail each of these steps in the next.

3.1.1 Single Bernstein Polynomial with Bounded Error for

Controller Approximation. We first introduce the concept of Bern-
stein polynomial. Let 𝑑 = (𝑑1, · · · , 𝑑𝑛) ∈ R

𝑛 and 𝜅𝑖 be a continuous
controller of the system over state variables 𝑥 = (𝑥1, · · · , 𝑥𝑛) ∈ 𝑋 .
The polynomials related to controller 𝜅𝑖

𝐵𝜅𝑖 ,𝑑 (𝑥) =
∑

0≤𝑎 𝑗 ≤𝑑 𝑗

𝑗={1,2, · · · ,𝑛}

𝜅𝑖

(
𝑎1

𝑑1
, · · · ,

𝑎𝑛

𝑑𝑛

) 𝑛∏

𝑗=1

( (𝑑 𝑗
𝑎 𝑗

)
𝑥
𝑎 𝑗

𝑗 (1 − 𝑥 𝑗 )
𝑑 𝑗−𝑎 𝑗

)

are called Bernstein polynomials of 𝜅𝑖 under degree 𝑑 .
To obtain the inner-approximation 𝑋 𝑖

𝐼
for the system with con-

troller 𝜅𝑖 , we first overly approximate 𝜅𝑖 by a single Bernstein poly-
nomial with bounded error in Equation (4) on the safe state space 𝑋 ,
similar as in [16],

𝜅𝑖 (𝑥) ∈ 𝐵𝜅𝑖 ,𝑑 (𝑥) + [−𝜖, 𝜖],∀𝑥 ∈ 𝑋, (4)

where 𝜖 is the approximation error bound. Since the controllers
in this paper are all considered as continuous functions, according
to [8], we can always ensure that such approximation exists.

This approximation converts the system with 𝜅𝑖 into a polynomial
system. The disturbance for the converted system is the Moniski
sum

⊕
of external disturbance and approximation error. Now, the

system with controller 𝜅𝑖 is approximated as

𝑥 (𝑡 + 1) = 𝑓 (𝑥 (𝑡), 𝐵𝜅𝑖 ,𝑑 (𝑥 (𝑡)), 𝜔̂ (𝑡)), 𝑡 ≥ 0,

where 𝜔̂(t) is
𝜔̂ (𝑡) = 𝜔 (𝑡)

⊕
𝜖.

Table 1: Error bound by different approximation methods for

the oscillator’s neural network controller 𝜅2. The control input

space is normalized into interval [-1, 1]. Note that the partition

approximation achieves the smallest bound. Simply increasing

the degree will reduce the error bound but has limited effect.

3-Partition (d=3) Single (d=3) Single (d=5) Single (d=7)

0.102 0.27 0.169 0.163

However, this single Bernstein polynomial approximation is not
sufficient for all encountered neural network controllers in our ex-
periments. Recall the oscillator example with the neural network
controller 𝜅2 (details in Section 4), a single Bernstein polynomial
with a low degree, e.g., 𝑑 = 3, for the approximation introduces a
large error bound 2, as shown in Table 1. With such large error bound,
we just get an empty set for 𝑋 2

𝐼
by SDP. To reduce the error bound, a

simple way is to increase the degree, e.g., set 𝑑 = 5 or 7 for Bernstein
polynomial approximation. However, the reduction is limited in prac-
tice, as shown in Table 1. Moreover, increasing the approximation
degree converts the system into a higher order polynomial system,
resulting in drastically-increasing computation complexity for 𝑋 2

𝐼
.

Thus, we propose a partition approximation method with low-degree
polynomials to reduce the error bound.

3.1.2 Partition Approximation. Following the idea of spline in-
terpolation, we first partition 𝑋 into 𝑃 boxes with each box named
as 𝑋𝑝 , for 𝑝 = (1, 2, · · · , 𝑃):

𝑋𝑝1 ∩ 𝑋𝑝2 = ∅, 𝑖 𝑓 𝑝1 ≠ 𝑝2 𝑎𝑛𝑑 ∪
𝑃
𝑝=1 𝑋

𝑝
= 𝑋,

where 𝑝1, 𝑝2 ∈ {1, 2, · · · , 𝑃}. Now each box 𝑋𝑝 has its own state
constraints, defined as 𝑋𝑝

= {𝑥 ∈ R𝑛 |
∧𝑛𝑝

𝑖=1 ℎ𝑝,𝑖 (𝑥) ≤ 0}, where ℎ
denotes the linear box constraint function.

Then, on each box 𝑋𝑝 , a Bernstein polynomial 𝐵𝑝
𝜅𝑖 ,𝑑

is applied
for approximation, reducing the overall approximation error bound
𝜖 = max(𝜖𝑝 ), where 𝜖𝑝 is the error bound on box 𝑋𝑝 as

𝜅𝑖 (𝑥) ∈ 𝐵
𝑝

𝜅𝑖 ,𝑑
(𝑥) + [−𝜖𝑝 , 𝜖𝑝 ], ∀𝑥 ∈ 𝑋𝑝 .

With such partition, the system with each controller can now be
converted into a hybrid polynomial system. Each partition now acts
as a subsystem with Bernstein polynomial control input on it. For
this hybrid system, the new bounded disturbance is the Moniski sum⊕

of external disturbance 𝜔 and overall approximation error bound
max(𝜖𝑝 ). Such a hybrid system can be expressed as

𝑥 (𝑡 + 1) = 𝑓 (𝑥 (𝑡), 𝑢 (𝑡), 𝜔̂ (𝑡)), 𝑡 >= 0,

where 𝑢 (𝑡) and 𝜔̂ (𝑡) are

𝑢 (𝑡) =

𝑃∑

𝑝=1

1𝑋𝑝 · 𝐵
𝑝

𝜅𝑖 ,𝑑
(𝑥 (𝑡)), 𝜔̂ (𝑡) = 𝜔 (𝑡)

⊕
max(𝜖𝑝 ), (5)

where 1𝑋𝑝 is an indicator function, 𝑝 = (1, 2, · · · , 𝑃).
When we use the partition approach to approximate the 𝜅2 of

the oscillator with 𝑑 = 3, we achieve the smallest error bound,
when compared with 𝑑 = 3, 5, 7 under the non-partitioned single-
polynomial approximation. This is shown in Table 1.

2𝑑 = 3 actually means 𝑑 = (3, 3) , representing that the highest polynomial degree for
the oscillator state (𝑥1, 𝑥2) is (3, 3) . The same applies to 𝑑 = 5, 7.



REMARK 2. For polynomial controller 𝜅𝑖 with degree 𝑑0, if we

choose Bernstein polynomial 𝐵𝜅𝑖 ,𝑑0 also with degree 𝑑0, then the

approximation error 𝜖 = 0. For the feed-forward neural network

controller, the partition approximation greatly reduces 𝜖 in practice,

compared to single-polynomial approximations.

Next, the inner-approximation of the robust invariant set of such
a converted hybrid system is computed.

3.1.3 Inner-approximation of Robust Invariant Set. Each con-
verted hybrid system has constraints defined as Definition 3.3.

Definition 3.3. Each converted hybrid polynomial system is sub-
ject to state constraints on each partition 𝑋𝑝 , the entire safe space
𝑋 and the disturbance Ω̂ (𝜔̂ defined in Equation (5)), which can be
expressed as the following sets.




𝑋 = {𝑥 ∈ R𝑛 |
∧𝑛0

𝑖=1 ℎ0,𝑖 (𝑥) ≤ 0}

𝑋𝑝
= {𝑥 ∈ R𝑛 |

∧𝑛𝑝
𝑖=1 ℎ𝑝,𝑖 (𝑥) ≤ 0}

Ω̂ = {𝜔̂ ∈ R𝑘 |
∧𝑛𝜔̂

𝑖=1 ℎ𝜔̂,𝑖 (𝜔̂) ≤ 0}

where 𝑝 = (1, 2, · · · , 𝑃), and ℎ denotes the linear box constraint
function.

Then, following the method in [37], the inner-approximation of
robust invariant set for such a hybrid system can be obtained by
solving an SDP. First, we compute the one-step reachable set 𝑅(𝑋 )
as the states reachable from the 𝑋 within one-step computation, i.e.,

𝑅(𝑋 ) ≔ {𝑥 | 𝑥 = 𝑓 (𝑥,𝑢, 𝜔̂), 𝑥 ∈ 𝑋, 𝜔̂ ∈ Ω̂} ∪ 𝑋 .

Then, we define a continuous function 𝑣 (𝑥) : R
𝑛 → R. When

𝑣 (𝑥) is constrained to the polynomial type and the system state is
constrained in a ball 𝐵 with 𝐻 as a constant

𝐵 = {𝑥 | | |𝑥 | |2 − 𝐻 ≤ 0},

such that 𝑅(𝑋 ) ⊆ 𝐵. Then, according to [37], the inner-approximation
of the robust invariant set as {𝑥 ∈ 𝐵 | 𝑣 (𝑥) ≤ 0} can be obtained by
solving an SDP optimization problem




min

𝑣, 𝑠𝑋
𝑝

𝑝,𝑙1
, 𝑠 Ω̂

𝑙2
, 𝑠𝑝 , 𝑠

′

1, 𝑗

𝑐 ·𝑤

𝑣 (𝑥) − 𝑣 (𝑓 (𝑥,𝑢, 𝜔̂)) +
∑𝑛𝑝
𝑙1=1

𝑠𝑋
𝑝

𝑝,𝑙1
ℎ𝑖,𝑙1 (𝑥)+

∑𝑛𝜔̂
𝑙2=1

𝑠 Ω̂
𝑙2
ℎ𝜔̂,𝑙2 (𝜔̂) − 𝑠𝑝ℎ(𝑥) ∈ 𝑆𝑂𝑆 (𝑥, 𝜔̂),

(1 + ℎ2
0, 𝑗 )𝑣 (𝑥) − ℎ0, 𝑗 (𝑥) − 𝑠

′

1, 𝑗ℎ(𝑥) ∈ 𝑆𝑂𝑆 (𝑥),

where 𝑐 ·𝑤 =
∫
𝐵
𝑣 (𝑥)𝑑𝑥 , 𝑐 is the unknown coefficient vector in 𝑣 (𝑥),

and 𝑤 is the vector of the integration for each monomial in 𝑣 (𝑥)

over 𝐵. 𝑠𝑋
𝑝

𝑝,𝑙1
, 𝑠 Ω̂

𝑙2
, 𝑠𝑝 , 𝑠

′

1, 𝑗 are the sum-of-squares(𝑆𝑂𝑆) polynomials,

where 𝑝 = (1, 2, · · · , 𝑃), 𝑙1 = (1, 2, · · · , 𝑛𝑝 ), 𝑙2 = (1, 2, · · · , 𝑛𝜔̂ ) and

𝑗 = (1, 2, · · · , 𝑛0). 𝑠𝑋
𝑝

𝑝,𝑙1
, 𝑠 Ω̂

𝑙2
, 𝑠𝑝 ∈ 𝑆𝑂𝑆 (𝑥, 𝜔̂) and 𝑠

′

1, 𝑗 ∈ 𝑆𝑂𝑆 (𝑥).

Safe Controller for the Illustrating Example: Recall the illustrat-
ing example. By solving the above SDP problem, we obtain 𝑋 2

𝐼
for

the controller 𝜅2 in the oscillator example with different approxima-
tion methods. The proposed partition approximation achieves better
result than the single-polynomial ones, as shown in Figure 2. Thus,
we use it to obtain 𝑋 1

𝐼
and 𝑋 2

𝐼
, as shown in Figure 3. To answer some

of the questions from Section 2, it is easy to check that state (1, 1)
belongs to the invariant intersection in Figure 3, thus guaranteeing
the safety by either 𝜅1 or 𝜅2.
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Figure 2: 𝑋 2

𝐼
of oscillator with 𝜅2 by SDP for different approxi-

mation methods. For 𝑆𝑖𝑛𝑔𝑙𝑒 (𝑑 = 3) (i.e., single polynomial with

degree 𝑑 = 3), the SDP returns an empty set due to its large er-

ror bound. For 𝑆𝑖𝑛𝑔𝑙𝑒 (𝑑 = 7) (single polynomial with 𝑑 = 7), we

obtain a non-empty inner-approximation but it is much more

conservative/inaccurate than the 3 − 𝑃𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛 method, where 3

polynomials are used with the partition approximation. More-

over, it took about 2 hours to compute 𝑋 2

𝐼
by 3 − 𝑃𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛 and

41 hours by 𝑆𝑖𝑛𝑔𝑙𝑒 (𝑑 = 7) with Mosek 8.0 and Matlab 2015.
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Figure 3: Inner-approximation of the robust invariant sets

𝑋 1

𝐼
, 𝑋 2

𝐼
for oscillator controlled by the DDPG controllers 𝜅1, 𝜅2.

The joint safe configuration space is 𝑋 1

𝐼
∪ 𝑋 2

𝐼
. The controller

adaptation learned by DRL will try to reduce the overall energy

consumption by intelligently switching 𝜅1 and 𝜅2 while main-

taining the state 𝑥 (𝑡) ∈ 𝑋 1

𝐼
∪ 𝑋 2

𝐼
.

.

Once the joint safe configuration space is derived, we can develop a
DRL method to learn an energy-saving adaptation strategy with the
safety guarantees, as introduced next.

3.2 DRL-based Control Adaptation

Within the safe configuration space S = ∪𝑀𝑖=1𝑋
𝑖
𝐼
, we develop a Dou-

ble DQN algorithm [30] to learn an energy-efficient adaptation strat-
egy with safety guarantees. The learning process can be formulated



as a Markov decision process (MDP) with a tuple (S,A,P,R, 𝛾). S
represents the state space of MDP. A is the action space. P is the
state transition probability, mapping the function S × A → S. 𝛾
is the discounted factor, and R is the reward function encoding the
desired goal of the reinforcement learning agent. More specifically,
they are formulated as follows.

State: To ensure that the adaptation guarantees safety, the state space
S here is defined as the joint safe configuration space. Moreover, the
state of the Double DQN agent is the system state 𝑥 (𝑡).

Action: We define the action space as the discrete space A =

{1, · · · , 𝑀}. At time 𝑡 , 𝑎(𝑡) ∈ A means that the Double DQN agent
chooses controller 𝜅𝑎 (𝑡 ) for controlling the system.

Reward Function: Reward design encodes the desired goals for the
agent. First, we set a punishment for the energy cost as −||𝑢 (𝑡) | |1 for
the time step 𝑡 . In order to maximize the cumulative reward, the agent
needs to learn to avoid large control input. Moreover, the agent needs
to set a punishment for choosing any unsafe controller, i.e., choosing
controller 𝜅𝑎 (𝑡 ) while 𝑥 (𝑡) ∉ 𝑋

𝑎 (𝑡 )
𝐼

(note that 𝑥 (𝑡) ∈ ∪𝑀𝑖=1𝑋
𝑖
𝐼
, which

means a safe choice does exist), so that it can learn to avoid such
choice. With these two considerations, we design the reward function
as

𝑟 (𝑥 (𝑡), 𝑎(𝑡), 𝑥 (𝑡 + 1)) =

{
𝐶 − 𝜆 | |𝑢 (𝑡) | |1 Otherwise,

𝑅𝑝𝑢𝑏 𝑖 𝑓 𝑥 (𝑡) ∉ 𝑋
𝑎 (𝑡 )
𝐼

,
(6)

where 𝐶 is a positive constant, 𝜆 is the weight for the punishment of
energy cost −||𝑢 (𝑡) | |1, 𝑅𝑝𝑢𝑏 is a negative constant that punishes the
agent for choosing any unsafe controller. Note that 𝑅𝑝𝑢𝑏 is applied
at most once during a training epoch, as the epoch would end after
the choice of an unsafe controller.

We develop the Double DQN algorithm to learn an efficient and
safe adaptation strategy based on the MDP specified above. The
details of the learning process is shown in Algorithm 2.

Algorithm 2 Double DQN for Learning Adaptation Strategy

Require: Joint safe configuration space ∪𝑀𝑖=1𝑋
𝑖
𝐼

1: Initialize replay memory 𝐷 ,𝑄 network with parameters 𝜃 , target
network 𝑄̂ with parameters 𝜃 , and update period 𝐶0.

2: for 𝑒𝑝𝑜𝑐ℎ = 0, . . . , 𝑁 do

3: Randomly initialize state 𝑥 (0) ∈ ∪𝑀𝑖=1𝑋
𝑖
𝐼
.

4: for 𝑡 = 0, . . . ,𝑇 do

5: 𝑎(𝑡) = 𝜖 − 𝑔𝑟𝑒𝑒𝑑𝑦 (𝑄 (𝑥 (𝑡)), 𝜖).

6: if 𝑥 (𝑡) ∉ 𝑋
𝑎 (𝑡 )
𝐼

then

7: Update reward punishment 𝑅𝑝𝑢𝑏 and break.
8: end if

9: Switch to controller 𝜅𝑎 (𝑡 ) ; 𝑥 (𝑡) evolves to 𝑥 (𝑡 + 1); receive
reward 𝑟 (𝑡); store tuple (𝑥 (𝑡), 𝑎(𝑡), 𝑥 (𝑡 + 1), 𝑟 (𝑡)) into 𝐷 .

10: Sample mini-batch from 𝐷; compute TD error [27].
11: Apply gradient descent to 𝑄 .
12: Update 𝜃 = 𝜃 every 𝐶0 steps.
13: end for

14: end for

15: return 𝑄 forwarding function as the adaptation strategy 𝑔.

Safety Guard Rule: Although we have defined a punishment for
any unsafe choice, the Double DQN agent may still occasionally

choose unsafe controllers due to the trial-and-error nature of rein-
forcement learning. In those rare cases, we set a safety guard rule for
ensuring system safety. Specifically, if the agent chooses an unsafe
controller, the safety guard will discard it and randomly choose a
safe one. Note that as long as the system initial state belongs to the
joint safe configuration space S, such safe choice always exists.

Energy-saving Controller for the Illustrating Example: In this
example, the learned Double DQN agent chooses controller 𝜅1 for
the system at the initial state (1, 1), later switches between 𝜅1 and 𝜅2,
and keeps using 𝜅1 after around 20 steps as the state is approaching
the origin point.

4 EXPERIMENTAL RESULTS

Experiments on the illustrating Van der Pol’s oscillator example and
an adaptive cruise control (ACC) system, a common safety-critical
system, are conducted to evaluate the effectiveness of our approach.

4.1 Van der Pol’s Oscillator

The Van der Pol’s oscillator system is defined in Equation (1) in
Section 2. As stated before, we train two controllers by the DDPG
method with different reward designs, and name them 𝜅1 and 𝜅2. The
reward for the DDPG learning can be expressed as (note that this is
for learning the underlying controllers 𝜅1 and 𝜅2, and different from
the Double DQN learning for controller adaptation in Equation (6)):

𝑟 = 10 − 𝜆1 ( |𝑥1 | + |𝑥2 |) − 𝜆2 ( |𝑢 | + |𝑢 − 𝑢
′

|),

where 10 is the reward for each safely-controlled step, 𝜆1, 𝜆2 ≥ 0 are
weights for state and control input penalty, respectively, and 𝑢

′
is the

control input of previous step. For controller 𝜅1, both 𝜆1 and 𝜆2 are
set to 1. For 𝜅2, 𝜆1 and 𝜆2 are set to 5 and 0.2, respectively.

To compute the robust invariant sets, both controllers need to be
approximated by Bernstein polynomials with bounded errors via
partitioning. Each inner-approximation of the robust invariant set is
obtained, as shown in Figure 3. Then the Double DQN is applied to
learn an adaptation strategy between 𝜅1 and 𝜅2. The 𝐶 in the reward
Equation (6) is 2, 𝜆 is 1, and 𝑅𝑝𝑢𝑏 is -20. The hyper-parameters in
Algorithm 2 is set as follows: the size of the replay buffer 𝐷 is 5000,
𝛾 is 0.99, 𝐶0 is 100, and the learning rate is 1e-4.

We set three baselines: using 𝜅1 only, using 𝜅2 only, and random
adaptation. We conduct 500 test cases by randomly picking 500
initial states within 𝑋 1

𝐼
∪ 𝑋 2

𝐼
, and run all the methods from the same

initial state for 200 control steps for each case. The energy consump-
tion is measured by a normalized cost metric for comparison.

Table 2: Comparison of results for the oscillator experiment.

Ours 𝜅1 only 𝜅2 only Random

Safe control rate 100 % 86.4 % 95.6 % 92 %
Energy cost 127.8 130.1 164.1 383.8

Comparison among Different Methods: We compare the average
system safety rate and energy cost among different methods, and
show them in Table 2. Our approach formally guarantees 100% safety
as the initial state is within 𝑋 1

𝐼
∪ 𝑋 2

𝐼
, while the other methods all



have significant number of unsafe cases. Note that the three base-
lines do not employ the safety guard rule, since they do not have
the capability to compute the safe invariant sets. However, for our
approach, even without the safety guard rule, our system is safe
for more than 99.6% of the cases, which shows the effectiveness of
switching between multiple controllers to avoid the unsafe choices.
Moreover, our approach also provides the lowest energy cost, which
demonstrates that the reward function design in our Double DQN is
effective for overall energy saving.

4.2 Adaptive Cruise Control

We also conducted experiments on an ACC system. We consider two
vehicles in the system. The front vehicle is running with a velocity
𝑣 𝑓 , while the following/ego vehicle brakes or accelerates according
to the control design. Overall, the system dynamics is

{
𝑠 (𝑡 + 1) = 𝑠 (𝑡) − (𝑣 (𝑡) − 𝑣 𝑓 (𝑡))𝛿,

𝑣 (𝑡 + 1) = 𝑣 (𝑡) − (𝑘𝑣 (𝑡) − 𝑢 (𝑡))𝛿,

where 𝑠 represents the distance between vehicles, 𝑣 is the velocity
of the ego vehicle, 𝑢 is the control input, 𝛿 = 0.1 is the sampling
period, and 𝑘 = 0.2 is the velocity resistance. 𝑣 𝑓 = 40 +𝑤 , where 𝑤
is uniformly random distributed over [−4, 4]. The definition of the
safe set 𝑋 over state variable (𝑠, 𝑣) is

𝑋 ≔ {(𝑠, 𝑣) | 𝑠 ∈ [120, 180], 𝑣 ∈ [25, 55]}.

Here we want this ACC system to be controlled stably to the
equilibrium state (150, 40). To this end, we design two different
controllers – one is a Linear-Quadratic Regulator (LQR) controller
𝜅1, and the other is a neural network controller 𝜅2 obtained by the
DDPG method. The LQR’s parameters representing the weights for
state and control input are set to 2 and 0.4, respectively. The DDPG
controller has the reward function as

𝑟 = 25 − 0.5( |𝑠 − 150| + |𝑣 − 40| + |𝑢 | + |𝑢 − 𝑢
′

|),

where 25 is the reward for every successful control and 𝑢
′

is the
previous control input (note that this reward function is for learning
the underlying controller 𝜅2, not the Double DQN for controller
adaptation).

For the LQR controller 𝜅1, 𝑋 1

𝐼
can be directly obtained by SDP.

For the DDPG controller 𝜅2, Bernstein polynomial approximation
via partition is first applied, converting the NNCS into a hybrid
polynomial system with bounded disturbance. Then, 𝑋 2

𝐼
is obtained

for such a hybrid system. 𝑋 1

𝐼
and 𝑋 2

𝐼
for ACC are shown in Figure 4.

Then, Double DQN is applied to learn the adaptation strategy. 𝐶 in
Equation (6) is 25, 𝜆 is 1, and 𝑅𝑝𝑢𝑏 is -50. The hyper-parameters
in Algorithm 2 are set as follows: the size of the replay buffer 𝐷 is
5000, 𝛾 is 0.99, 𝐶0 is 100, and the learning rate is 1e-4.

We consider three baselines: using LQR 𝜅1 only, using DDPG
controller 𝜅2 only, and random adaptation between the two. We
conduct 500 test cases by randomly sampling 500 initial states within
𝑋 1

𝐼
∪ 𝑋 2

𝐼
, and run all the methods from the same initial state for 100

control steps for each case. The energy consumption is measured by
a normalized cost metric for comparison.

Comparison among Different Methods: The comparison of our
approach with three baselines are shown in Table 3. Consistent with
the results for the Van der Pol’s oscillator, our approach achieves
the least average energy cost (over 500 cases) and guarantees 100%
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Figure 4: Inner-approximation of the robust invariant sets

𝑋 1

𝐼
, 𝑋 2

𝐼
for ACC by LQR controller 𝜅1 and DDPG controller 𝜅2.

Joint safe configuration space is 𝑋 1

𝐼
∪𝑋 2

𝐼
. The controller adapta-

tion learned by Double DQN reduces the overall control energy

cost while maintaining 𝑥 (𝑡) ∈ 𝑋 1

𝐼
∪ 𝑋 2

𝐼
.

Table 3: Comparison of results for the ACC experiment.

Ours 𝜅1 only 𝜅2 only Random

Safe control rate 100 % 97.4 % 99 % 99.6 %
Energy cost 835.7 854.8 997.5 1085.5

safe control rate, significantly outperforming the baselines. Note that
in this example, even without the safety guard rule, our approach
achieves 100% safe rate (although the safety guard rule is still needed
in practice for guaranteeing safety).

5 DISCUSSION

Scale the External Disturbance: In practice, the system may en-
counter stronger external disturbance that exceeds the original design
expectation. The theoretical robust invariant set of the corresponding
system would shrink by some extent in such scenario, and thus safety
is no longer guaranteed with the computed invariant. Although, with
the inner approximation, the system might still have some buffer to
be able to handle such stronger external disturbance. We demonstrate
this conjecture in both ACC and oscillator examples by scaling the
disturbance to twice and four times of the design assumption.

The results of this study are shown in Figure 5 and 6. As the
disturbance scales, the safe control rates for all methods decrease.
However, the safe rate of our approach decreases at a much slower
pace than the baselines, showing its robustness to external distur-
bance (even when the disturbance unexpectedly exceeds the design
assumption). Note that the safe rate of our approach is still 100% in
the experiments when the disturbance doubles, although this is not
always guaranteed.

States Outside of the Joint Safe Configuration Space: There might
also be cases in practice where we cannot set the initial state to be
within the joint safe configuration space and thus cannot guarantee
the system safety. In this study, we conduct experiments to evaluate
how our approach performs in such scenario, and how it compares
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Figure 5: Safe control rate for our approach and the baselines

when scaling the external disturbance in the oscillator example

by twice (left) and four times (right) of the design assumption.
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Figure 6: Safe control rate for our approach and the baselines

when scaling the external disturbance in the ACC example to

twice (left) and fourth times (right) of the design assumption.

with the baselines. Specifically, we train a Double DQN agent with
the same reward design on the entire state space 𝑋 , and we do not
end a training epoch if the agent chooses an unsafe controller.

The results for the oscillator example (initial state 𝑥 (0) = (−2, 2))
and the ACC example (initial state 𝑥 (0) = (177.74, 31.16)) are shown
in Figure 7 and 8, respectively. We can see that our approach can
pull the system state into the joint safe configuration space and then
always maintain its safety from that moment, while the baselines
with a single controller cannot. This shows that even when the initial
state is outside of the joint safe configuration space, our approach
may still be able to adapt the system into such space for ensuring
system safety.

Limitation: It is difficult for our current approach to handle high-
dimensional systems. First, it is challenging to accurately approx-
imate neural network controllers with high-dimensional input by
Bernstein polynomials. Second, the computation complexity of the
robust invariant set increases drastically as the system state dimen-
sion increases. Our future work will focus on addressing these issues.
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Figure 7: Robust invariant sets and system trajectory under dif-

ferent methods when initial state [2, -2] is outside of the joint

safe configuration space for the oscillator example. Our ap-

proach is able to pull the state into the joint safe configuration

space and maintain system safety. 𝜅1 fails after one step control

(not visible), 𝜅2 fails after a few steps. (Best viewed in color)
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Figure 8: Robust invariant sets and system trajectory under dif-

ferent methods when initial state [177.74, 31.16] is outside of

the joint safe configuration space for the ACC example. Our ap-

proach can pull the state into the joint safe configuration space

and maintain system safety. LQR controller 𝜅1 and DDPG con-

troller 𝜅2 both fail after a few steps. (Best viewed in color)

6 CONCLUSIONS

We present a controller adaptation approach based on formal meth-
ods and machine learning to guarantee system safety and improve
energy efficiency for LE-CPSs. In particular, we first compute a joint
safe configuration space of the multiple controllers, including neural
network ones, with a novel method based on Bernstein polynomial
approximation, state partitioning, conversion to hybrid systems, and
robust invariant set computation. We then develop a DRL-based
method to intelligently switch between controllers for reducing en-
ergy consumption while maintaining system safety by keeping its
state within the joint safe configuration space. Experimental results
and further analysis on two different case studies demonstrate that
our approach significantly outperforms the baselines in both safety
and energy efficiency.
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